「横浜市 区別市民意識ー要介護・高齢化率クロス分析」を例として、オープンデータの利活用の諸問題と、意味・意図のメタ情報を付加したデータ構造体作成について述べる。
オープンデータの種類、公開のされかたは様々あり、PDF、EXCEL、CSV.などデータ形式だけでなくそのデーら論理構造が様々でありそのままではリンクを取ったりマージができない場合殆どである。例えば横浜市でもデータ内容がそれを作成した部局でフォーマットが異なったり、データ尚列順序が異なったり栗栖分析することができない。そしてクロス分析だけでなくある目的にデータ構造(論理ー意味構造)を持たせるためにはその目的にあったものを再構成するしかない。
本事例では市民意識調査、高齢化率・要介護率のほか生活保護や生活基礎調査のデータから、その間の相関性を求めるために、データを2階層にカテライズした事例をしめす・それをメタ・メタデータと呼んでいる。最上位層は生データの持つ性格や使用目的をあらわし、その下位階はその理由やブレークダウンしたものである。この2つをメタ・メタデータと呼んでいる。最下位層はメタデータでありデータの属性をしめすものである。
イープンデータを利用する場合、単独での利用もあるが、一般にデータとデータの関係性に問題の所存がありその関係性を分析すること問題の解決やサービスを生み出すことができる。また、情報検索を行う場合、データの持っている性格や情報発信側の意図するところを見つけ検索したり、情報発信側がそのデータセットをもっと利用してもらいやすいような抽象度を高めた名前付けをすることでオープンデータとしてもっと使ってもらいやすいようになる。
今回ここに示す事例では上記のようなカテゴイズを行い、クロス分析をする場合、上位概念での相関性を考えることで物事をマクロにみることができる。このような考え方を一般に普及させることを進めてきた。
コレラのことはセマンティックWEBと密接に絡んでいる。形式的意味論から本質的息論にたつことで、AIにおける諸問題がかなり見通しがよくなると考える。